Synthesis and spectral properties of 2,7-di-tert-butyl-4,9-bis(arylethynyl)and 4,10-bis(arylethynyl)pyrenes
Jian-yong Hu, Arjun Paudel and Takehiko Yamato*
Department of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1, Saga-shi, Saga 840-8502, Japan

Formylation of 2,7-di-tert-butylpyrene with dichloromethyl methyl ether in the presense of AICl_{3} afforded a mixture of 2,7-di-tert-butylpyrene-4,9-biscarbaldehyde and 4,10-biscarbaldehyde in the ratio of $75: 25$, from which the corresponding bis(arylethynyl)pyrenes were obtained by the Wittig reaction with aryl methyl phosphonium ylides followed by bromination and dehydrobromination.

Keywords: pyrenes, Wittig reaction, (phenylethynyl)pyrene, bromination, dehydrobromination

Pyrene and its derivatives have been widely used as fluorescent probes in many applications. For example, pyrenelabelled oligonucleotides have been used as probes to study DNA hybridisation, ${ }^{1}$ and pyrene-labelled lipids have been used to study the depth-dependent quenching of fluorescence in lipid bilayers. ${ }^{2}$ Recently, the synthesis of a pyrenebased fluorescent dendrimer has been reported wherein the core unit is a 1,3,6,8-tetrasubstituted pyrene and the peripheral units contain monosubstituted pyrene units. ${ }^{3-5}$ In the applications of fluorescence techniques, it is desirable to design molecules that have emission in the visible region. The most common method to bathochromically shift the absorption and emission characteristics of a fluorophore to extend the π-conjugation by introducing unsaturated functional groups to the core of the fluorophore.

One such group is the acetylenic group. In a recent paper the absorption and fluorescence emission properties of the dimer of 1-ethynylpyrene, namely 1,4-bis(1-pyrene)butadiyne, have been reported, ${ }^{6}$ and polymers of 1-ethynylpyrene and 1 trimethylsilylethynylpyrene have been also reported. ${ }^{7}$ These polymers exhibit high thermal stability and absorb and emit in the visible region. In the present study, we have used acetylenic groups to extend the conjugation of the pyrene chromophore, Thus there is substantial interest in investigating of the synthesis of arylethynyl substituted pyrenes, and several of its derivatives bearing both hydrophilic and hydrophobic substituents and studies on the electronic absorption and fluoroscence emission properties of these molecules.

We previously reported the TiCl_{4}-catalysed formylation of 2,7-di-tert-butylpyrene (1) with dichloromethyl methyl ether using the tert-butyl group as a positional protective group to afford only 4 -monoformylated product, 2,7-di-tert-butylpyrene-4-carbaldehyde 2 in excellent yield. ${ }^{8,9}$ We have now succeeded in introducing two formyl groups at 4,9 and 4,10 positions. These compounds afforded a convenient starting material for the preparation of the corresponding bis(arylethynyl)pyrenes by the Wittig reaction with aryl methyl phosphonium ylides followed by bromination and dehydrobromination. We report here synthesis and structural properties of novel 4,9- and 4,10-bis(arylethynyl)pyrenes.

Results and discussion

The formylation of 2,7-di-tert-butylpyrene $\mathbf{1}$ with dichloromethyl methyl ether was carried out under the various conditions. Thus, formylation of $\mathbf{1}$ with dichloromethyl methyl ether at room temperature for 3 h in the presence of titanium tetrachloride occurred selectively at 4 -position to afford the corresponding 4 -formyl derivative $\mathbf{2}$ in 93% yield (Table 1). Prolonging the reaction time to 12 h reaction led to the increase of the yield of 2 to 97%. The different regioselectivity was observed in formylation of $\mathbf{1}$ with dichloromethyl methyl ether (4.0 equiv.) in the presence of AlCl_{3} for 3 h occurred at 4 - and 9 - or 10-position to afford a mixture of the corresponding diformylated products 3 and 4 in 35% yield, in which ratio is determined as $74: 26$ by ${ }^{1} \mathrm{H}$ NMR spectrum, along with 4 -formyl derivative 2 in 65%

Table 1 Formylation of 2,7-di-tert-butylpyrene (1) with $\mathrm{Cl}_{2} \mathrm{CHOMe}$. ${ }^{\text {a }}$

			Product yields/\%b		
Run	Lewis acids	Reaction time $/ \mathrm{h}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
1	TiCl_{4}	3	$93[84]^{\mathrm{c}}$	0	0
2	TiCl_{4}	12	$97[87]^{\mathrm{c}}$	0	0
3	AlCl_{3}	3	65	26	9
4	AlCl_{3}	12	3	$73[55]$	24

${ }^{a}$ Yields are determined by G.L.C. analyses. ${ }^{\text {b }}$ Isolated yields are shown in square parentheses. ${ }^{\text {c }}$ The starting compound 1 was recovered in 7 and 3% yields, respectively.

[^0]yield. Interestingly, the formylation of $\mathbf{1}$ with large excess (14.0 equiv.) of dichloromethyl methyl ether in methylene dichloride solution in the presence of AlCl_{3} for 12 h increased yields of the diformylated derivatives 3 and 4 to 97% in the ratio of 75:25 (${ }^{1} \mathrm{H}$ NMR) along with 2 in 3\% yield. The crude product was washed with a hot mixture of hexane-methanol ($10: 1$) to furnish the complete separation of 3 in 65% yield as a pale yellow solid, which was recrystallised from hexane afforded pure $\mathbf{3}$ in 55% yield as pale yellow prisms. However, several attempts to isolate pure 4 failed. The structures of 3 and 4 were assigned by spectral data and elemental analysis. Thus, ${ }^{1} \mathrm{H}$ NMR spectral data ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3}$ shows a set of doublets with the meta-coupling constant $(J=1.8$ $\mathrm{Hz})$ at $\delta 8.44\left(\mathrm{H}_{1,6}\right)$ and $9.92\left(\mathrm{H}_{3,8}\right) \mathrm{ppm}$ as well as a singlet at $\delta 8.60 \mathrm{ppm}$, which is assigned to the protons of positions 5,10 on pyrene ring, respectively. On the other hand, ${ }^{1} \mathrm{H}$ NMR spectral data ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{4}$ shows three singlets (relative intensity $1: 1: 1$) at $\delta 8.51\left(\mathrm{H}_{6,8}\right), 8.57\left(\mathrm{H}_{1,3}\right)$ and $9.82\left(\mathrm{H}_{5,9}\right) \mathrm{ppm}$ and two singlets (relative intensity $\left.1: 1\right)$ at $\delta 1.62$ and 1.64 for tert-butyl protons. These data strongly support the assignment of structure of 2,7-di-tert-butyl-4,9diformylpyrene $\mathbf{3}$ and 2,7-di-tert-butyl-4,10-diformylpyrene 4. These results strongly suggest the tert-butyl group on the pyrene ring protects the electrophilic attack at the $1,3,6,8$ positions permitting the electrophilic attack at the 4,9 and 4,10-positions. ${ }^{8,9,10-13}$ Thus formylation of $\mathbf{1}$ selectively afforded 4-mono- and 4,9- and 4,10-di-substitution products depending on Lewis acid catalysts used.

The reaction of $\mathbf{3}$ and the benzyltriphenylphosphonium chloride 5a with n-butyllithium in THF gave the desired (E, E) -2,7-di-tert-butyl-4,9-bis(2-phenylethenyl)pyrene (E, E) - $\mathbf{6 a}$ in 78% yield as a major product, while other possible isomers were not observed (Scheme 1). The E, E-isomer (E, E)-6a was isolated pure by silica gel column chromatography and recrystallisation from hexane. Similarly, (E, E)-2,7-di-tert-butyl-4,9-bis[2-(4-methoxyphenyl)ethenyl]pyrene (E, E)-6b was prepared in 82% yield.

The structures of products $(E, E)-\mathbf{6 a}$ and $(E, E)-\mathbf{6 b}$ were determined on the basis of their elemental analyses and spectral data. ${ }^{1} \mathrm{H}$ NMR signals of the olefinic protons for E-olefins should be observed at lower magnetic field ($\delta>$ $7.4 \mathrm{ppm})$ than that of Z-olefins $(\delta<6.9 \mathrm{ppm}) .{ }^{14}{ }^{1} \mathrm{H}$ NMR
spectrum of $(E, E)-\mathbf{6} \mathbf{b}$ in CDCl_{3} shows a singlet at $\delta 3.89$ ppm for methoxy protons, a pair of doublets $(J=15.6 \mathrm{~Hz})$ at $\delta 7.34,7.92 \mathrm{ppm}$ for olefinic protons, and a pair of doublets $(J=8.7 \mathrm{~Hz})$ at $\delta 7.01,7.65 \mathrm{ppm}$ for aromatic protons. These data strongly support that the structure of $(E, E)-\mathbf{6 b}$ is the (E, E)-configuration.

Attempted bromination of (E, E) - $\mathbf{6 b}$ with 2.1 equimolar amounts of benzyltrimethylammonium tribromide (BTMA Br_{3}), which was recently found to be a convenient solid brominating agent, ${ }^{15}$ carried out in a dichloromethane solution at room temperature for 5 min led to the expected cis and trans-adduct $\mathbf{7 b}$ in the ratio of 20:80 in 76% yield. The same result was obtained from the treatment of (E, E) - $\mathbf{6 a}$ with BTMA Br_{3} under the same conditions described above.

When the bromine adduct 7b treated with potassium tert-butoxide in refluxing $t \mathrm{BuOH}$ for 6 h , the di-dehydrobromination product 2,7-di-tert-butyl-4,9-bis(4-methoxyphenylethynyl)pyrene 8b was obtained in 87% yield. Similar result was obtained in the case of $(E, E)-6$ a and the corresponding di-dehydrobromination product, 2,7-di-tert-butyl-4,9-bis(4-phenylethynyl)pyrene $\mathbf{8 a}$ was obtained in 86% yield as light-yellow prisms.

Although several attempted isolation of pure 4,10-diformyl compound 4 failed, we have carried out the Wittig reaction of a mixture of 4 and 3 ($50: 50$) with (4-methoxybenzyl)triphenylphosphonium chloride $\mathbf{5 b}$ in the presence of n-butyllithium in THF to afford a mixture of the desired (E, E)-2,7-di-tert-butyl-4,10-[2-(4-methoxyphenyl)ethenyl]pyrene (E, E)-9 and 4,9isomer $(E, E)-6 \mathbf{b}$ in 85% yield. Fortunately, we have isolated pure $(E, E)-9$ by careful column chromatography with ethyl acetate as an eluent. Similarly, we have converted $(E, E)-9$ to 2,7-di-tert-butyl-4,10-bis(4-methoxyphenylethynyl)pyrene 11 by bromination and dehydrobromination (Scheme 2).

The structures of $\mathbf{8 a}, \mathbf{8 b}$ and $\mathbf{1 1}$ were determined on the basis of their elemental analyses and spectral data. Thus, IR spectra (KBr) of $\mathbf{8 b}$ shows carbon-carbon triple bond stretching vibration around $2197 \mathrm{~cm}^{-1}$. The similar absorption was observed in $\mathbf{8 a}\left(2195 \mathrm{~cm}^{-1}\right)$ and $\mathbf{1 1}\left(2198 \mathrm{~cm}^{-1}\right) .{ }^{1} \mathrm{H}$ NMR spectral data ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{8 b}$ shows a set of doublets with the meta-coupling constant $(J=1.8 \mathrm{~Hz})$ at $\delta 8.21\left(\mathrm{H}_{1,6}\right)$ and $8.81\left(\mathrm{H}_{3,8}\right) \mathrm{ppm}$ as well as a singlet at $\delta 8.35 \mathrm{ppm}$, which is assigned to the protons of positions 5,10 on pyrene ring,

b; $\mathrm{R}=\mathrm{OMe}(76 \%)$
b; $\mathrm{R}=\mathrm{OMe}(87 \%)$

(E, E) $\mathbf{- 9}$

> (79\%)
10

11

Scheme 2

respectively. On the other hand, ${ }^{1} \mathrm{H}$ NMR spectral data (300 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{1 1}$ shows three singlets (relative intensity $1: 1: 1)$ at $\delta 8.17\left(\mathrm{H}_{6,8}\right), 8.33\left(\mathrm{H}_{1,3}\right)$ and $8.87\left(\mathrm{H}_{5,9}\right) \mathrm{ppm}$ and two singlets (relative intensity $1: 1$) at $\delta 1.62$ and 1.64 ppm for tert-butyl protons. These data strongly support the assignment of structure of 2,7-di-tert-butyl-4,9-bis(4-methoxyphenylethynyl)pyrene 8b and 2,7-di-tert-butyl-4,10-bis(4-methoxyphenylethynyl)pyrene 11.

While the chemical shifts of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals arising from both pyrene ring and benzene rings of $\mathbf{8 b}$ are comparable to those of $1,3,6,8,-$ tetra(phenylethynyl)substituted pyrenes. ${ }^{5,16}$ The signals of the acetylenic carbons are observed at $\delta 86.8$ and 94.5 ppm for $\mathbf{8 b}$ in which the latter carbons are in a strongly deshielding region due to the π-electrons of the pyrnene ring like those of 1,8 -bis [4-(N, N-dimethylamino)phenylethynyl]pyrene ($\delta 87.0$ and $97.2 \mathrm{ppm}) .{ }^{17}$ Similar findings are also observed in $\mathbf{8 a}(\delta 88.0$ and 94.4 ppm) and 11 ($\delta 86.7$ and 94.3 ppm).

Consequently, we have succeeded to prepare a series of substituted (phenylethynyl)pyrene derivatives $\mathbf{8 a}, \mathbf{8 b}$ and $\mathbf{1 1}$. The UV spectra of (phenylethynyl)pyrene derivatives $\mathbf{8 a}, \mathbf{8 b}$ and $\mathbf{1 1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ along with that of 2,7-di-tert-butylpyrene

Fig. 1 UV-Vis absorption spectra of compounds $\mathbf{8 a}, \mathbf{8 b}$ and 11 in dichloromethane at $1 \times 10^{-5} \mathrm{M}$ concentration at room temperature, compared with that of compound 1.
(1) are shown in Fig. 1. The spectra were recorded in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ in $1 \times 10^{-5} \mathrm{M}$ concentration. For these (phenylethynyl)pyrene derivatives $\mathbf{8 a}, \mathbf{8 b}$ and $\mathbf{1 1}$, the spectra are almost identical and three absorption bands were observed in the range of $300-400 \mathrm{~nm}$. The longest wavelength $\pi-\pi^{*}$ bands of (phenylethynyl)pyrene derivatives are bathochromically shifted by $35-40 \mathrm{~nm}$ in comparison with that of 2,7 -di-tertbutylpyrene (1) due to the introduction of the phenylethynyl group. On the other hand, the increased bathochromic shift of $\mathbf{8 b}(e . g .3-4 \mathrm{~nm})$ in comparison with that of $\mathbf{8 a}$ were observed which are ascribed to the increased π-electron density on the benzene ring arising from methoxy group introduced. Interestingly, much larger molar absorptivity was observed in 4,10-bis(phenylethynyl)pyrene derivative $\mathbf{1 1}$ in comparison with that in 4,10-bis(phenylethynyl)pyrene derivative $\mathbf{8 b}$. This finding indicates the higher exciton coupling between two 4-methoxyphenylethynyl at 4,10 positions than that of 4,9-positions. ${ }^{18-20}$

Upon excitation, the emission spectra of bis(phenylethynyl) pyrene derivatives $\mathbf{8 a}, \mathbf{8 b}$ and $\mathbf{1 1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ are almost identical and three absorption bands were observed in the range of $390-500 \mathrm{~nm}$. The slightly different shape in the

Fig. 2 Emission spectra of compounds $\mathbf{8 a}, \mathbf{8 b}$ and $\mathbf{1 1}$ in dichloromethane at $1 \times 10^{-6} \mathrm{M}$ concentration at room temperature, compared with that of compound 1.
emission spectra of $\mathbf{8 a}, \mathbf{8 b}$ and $\mathbf{1 1}$ in comparison with that of $\mathbf{1}$ are ascribed to the expanded conjugation of π-electron system by the introduction of phenylethynyl groups at the 4,9 and 4,10 positions. Interestingly, the increased bathochromic shift of $\mathbf{8 b}$ (e.g. 3 nm) in comparison with that of $\mathbf{8 a}$ were observed which is in agreement with that of UV-Vis absorption spectra.

Conclusions

We conclude that formylation of 2,7-di-tert-butylpyrene with dichloromethyl methyl ether in the presense of AlCl_{3} afforded a mixture of 2,7-di-tert-butylpyrene-4,9-biscarbaldehyde and 4,10-biscarbaldehyde in the ratio of 75:25, from which the corresponding bis(arylethynyl)pyrenes were obtained by the Wittig reaction with aryl methyl phosphonium ylides followed by bromination and dehydrobromination. Further chemical and structural properties of the present novel bis(arylethynyl)pyrenes derivatives $\mathbf{8}$ and $\mathbf{1 1}$ are currently under study in our laboratory.

Experiment

All melting points are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz on a Nippon Denshi JEOL FT-300 NMR spectrometer in deuteriochloroform with $\mathrm{Me}_{4} \mathrm{Si}$ as an internal reference. UV-vis spectra were recorded on a Perkin Elmer Lambda 19 UV/VIS/NIR spectrometer. Mass spectra were obtained on a Nippon Denshi JMSHX110A Ultrahigh Performance Mass Spectrometer at 75 eV using a direct-inlet system. Elemental analyses were performed by Yanaco MT-5.

Materials

Preparation of 2,7-di-tert-butylpyrene (1) was previously described. ${ }^{8,9}$
Formylation of 2,7-di-tert-butylpyrene (1) with $\mathrm{Cl}_{2} \mathrm{CHOMe}$ in the presence of TiCl_{4} : To a stirred solution of $\mathbf{1}(5.72 \mathrm{~g}, 20.0 \mathrm{mmol})$ and dichloromethyl methyl ether ($3.1 \mathrm{~mL}, 34.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(200 \mathrm{~mL})$ was added a solution of titanium tetrachloride $\left(5.0 \mathrm{~cm}^{3}\right.$, $45.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. This mixture was stirred for 12 h at room temperature. The reaction mixture was poured into a large amount of ice-water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(500 \mathrm{~mL} \times 2)$. The organic layer was washed with water ($300 \mathrm{~mL} \times 2$), dried over MgSO_{4}, and evaporated in vacuo. The residue was chromatographed over silica gel (Wako, C-300; 200 g) with a toluene as eluent to give a yellow solid, which was recrystallised from hexane- $\mathrm{CHCl}_{3}(1: 1)$ to afford 2,7-di-tert-butylpyrene-4-carbaldehyde $2(5.95 \mathrm{~g}, 87 \%)$ as yellow prisms, m.p. $175-177^{\circ} \mathrm{C}$ (lit ${ }^{8}$. m.p. ${ }^{\left.175-177^{\circ} \mathrm{C}\right) .}$

Formylation of 2,7-di-tert-butylpyrene (1) with $\mathrm{Cl}_{2} \mathrm{CHOMe}$ in the presence of AlCl_{3} : To a stirred solution of $\mathbf{1}(5 \mathrm{~g}, 16.0 \mathrm{mmol})$ and dichloromethyl methyl ether ($20 \mathrm{~mL}, 224 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(150 \mathrm{~mL})$ was gradually added a powdered aluminum chloride $(13.3 \mathrm{~g}$, $100 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. This mixture was stirred for 12 h at room temperature. The reaction mixture was poured into a large amount of ice-water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL} \times 2)$. The organic layer was washed with water $(100 \mathrm{~mL} \times 2)$, dried over MgSO_{4}, and evaporated in vacuo. The residue was washed with a hot mixture of hexane-ethyl acetate $(5: 1)(300 \mathrm{~mL} \times 2)$ and filtered. The filtrate was concentrated and washed with a hot mixture of hexane-methanol $(10: 1)(100 \mathrm{~mL})$ to afford the pure 2,7-di-tert-butylpyrene-4,9biscarbaldehyde $3(3.8 \mathrm{~g}, 65 \%)$ as a yellow solid. Recrystallisation from hexane afforded 2,7-di-tert-butylpyrene-4,9-biscarbaldehyde 3 $(3.26 \mathrm{~g}, 55 \%)$ as pale yellow prisms, m.p. $246-248^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) /$ $\mathrm{cm}^{-1}: 1680(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.63(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 8.44(2 \mathrm{H}, \mathrm{d}$, $\left.J=1.8 \mathrm{~Hz}, \operatorname{Ar} H_{l, 6}\right), 8.60\left(2 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H_{5,10}\right), 9.92(2 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}$, $\mathrm{Ar} \mathrm{H}_{3,8}$) and $10.52(2 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; m / z 370\left(\mathrm{M}^{+}\right)$(Found: C, 84.37; H, 6.99. $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{O}_{2}(370.5)$ requires C, 84.29 ; $\left.\mathrm{H}, 7.07 \%\right)$.

On the other hand, the filtrate was evaporated to leave the residue which was chromatographed over silica gel (Wako, C-300; 200 g) with a toluene as eluent afforded a mixture of 4,9-di-formyl- (3) and 4,10-diformylpyrene (4) in which ratio is determined as $50: 50$ by ${ }^{1} \mathrm{H}$ NMR spectrum. Although several attempted isolations of pure 4 failed, we have used crude 4 for next Wittig reaction.

2,7-di-tert-butylpyrene-4,10-biscarbaldehyde 4: $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.62$ $(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.64(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 8.51\left(2 \mathrm{H}, \mathrm{s}, \operatorname{Ar} H_{6,8}\right), 8.57(2 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Ar} H_{l, 3}\right), 9.82\left(2 \mathrm{H}, \mathrm{s}, \mathrm{ArH}_{5,9}\right)$ and 10.56 (2H, s, CHO).

Typical procedure for Wittig reactions of 2,7-di-tert-butylpyrene-4,9biscarbaldehyde (3): To a solution of benzyltriphenylphophonium chloride $5 \mathrm{a}(2.33 \mathrm{~g}, 6.0 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added $n-\mathrm{BuLi}$ (1.6 M solution in hexane) $(3.8 \mathrm{~mL}, 6.0 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$ under argon. After the solution was stirred for 10 min , the solution of 2,7 -di-tert-butylpyrene-4,9-biscarbaldehyde $3(342 \mathrm{mg}, 1.0 \mathrm{mmol})$ in THF (15 mL) was added. The reaction mixture was stirred at room temperature for 6 h under argon, and then it was poured into a large amount of ice-water and extracted with ethyl acetate ($100 \mathrm{~mL} \times 2$). The extract was washed with water and brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was chromatographed over silica gel (Wako C-300, 200 g) with hexaneethyl acetate ($5: 1$) as eluent to give (E, E) - $\mathbf{6 a}$ as light-yellow solids. Recrystallisation from hexane afforded (E, E)-2,7-di-tert-butyl-4,9-bis(2-phenyl- ethenyl)pyrene (E, E)-6a ($405 \mathrm{mg}, 78 \%$) as light-yellow prisms, m.p. $302-304{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.61(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 7.33-7.49$ $(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.44\left(2 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}\right.$, pyrene- $\left.\mathrm{CH}_{\mathrm{b}}=\mathrm{CH}_{a} \mathrm{Ar}\right), 7.71$ $(4 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{Ar} H), 8.06\left(2 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}\right.$, pyrene- CH_{b} $\left.=\mathrm{CH}_{\mathrm{a}} \mathrm{Ar}\right), 8.27\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}\right.$, pyrene- $\left.H_{3,8}\right), 8.30(2 \mathrm{H}, \mathrm{s}$, pyrene$\left.H_{5,10}\right)$ and $8.49\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}\right.$, pyrene- $\left.H_{1,6}\right) ; m / z 518(\mathrm{M}+$) (Found: C, 92.52; H, 7.43. $\mathrm{C}_{40} \mathrm{H}_{38}$ (518.75) requires C, $92.62 ; \mathrm{H}$, 7.38%).

Similarly, $(E, E)-\mathbf{6 b}$ was obtained in 82% yield.
(E, E)-2,7-di-tert-butyl-4,9-bis[2-(4-methoxyphenyl)ethenyl]pyrene $(E, E)-\mathbf{6 b}(435 \mathrm{mg}, 82 \%)$ was obtained as light-yellow prisms, m.p. $229-230^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.61(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 3.89(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.01$ $(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.34\left(2 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}\right.$, pyrene- CH_{b} $\left.=C H_{a} \mathrm{Ar}\right), 7.65(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.92(2 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}$, pyrene- $\left.\mathrm{CH}_{b}=\mathrm{CH}_{\mathrm{a}} \mathrm{Ar}\right), 8.25\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}\right.$, pyrene- $\left.H_{3,8}\right), 8.28$ $\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene- $\left.H_{5,10}\right)$ and $8.47\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}\right.$, pyrene- $\left.H_{1,6}\right)$; $m / z 578\left(\mathrm{M}^{+}\right)$(Found: C, 87.21; H, 7.34. $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{O}_{2}$ (578.8) requires C, 87.16; H, 7.31\%).

Wittig reactions of 2,7-di-tert-butylpyrene-4,10-biscarbaldehyde (4). To a solution of (4-methoxybenzyl)triphenylphosphonium chloride $\mathbf{5 b}(2.53 \mathrm{~g}, 6.0 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$ was added $n-\mathrm{BuLi}$ (1.6 M solution in hexane) $(3.8 \mathrm{~mL}, 6.0 \mathrm{mmol})$ at room temperature. After the solution was stirred for 10 min , the solution of a mixture of 2,7-di-tert-butylpyrene-4,10-biscarbaldehyde 4 and 2,7-di-tert-butylpyrene-4,9-biscarbaldehyde ($50: 50$) ($370 \mathrm{mg}, 1.0 \mathrm{mmol}$) in THF (15 mL) was added. The reaction mixture was stirred at room temperature for 6 h under argon, and then it was poured into a large amount of ice-water and extracted with ethyl acetate $(100 \mathrm{~mL} \times 2)$. The extract was washed with water and brine, dried over anhydrous MgSO_{4}, and concentrated under reduced pressure. The residue was chromatographed over silica gel (Wako C-300, 200 g) with hexaneethyl acetate ($5: 1$) as eluent to give a mixture of $(E, E)-9$ and (E, E) 6b ($491 \mathrm{mg}, 85 \%$) as light-yellow solids. The carefully column chromatography with ethyl acetate as an eluent afforded pure (E, E)-2,7-di-tert-butyl-4,10-bis[2-(4-methoxyphenyl)ethenyl]pyrene (E, E)-9 ($235 \mathrm{mg}, 45 \%$) as light-yellow prisms, m.p. $218-220^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $1.59(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.61(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 3.89(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 7.00(4 \mathrm{H}, \mathrm{d}$, $J=8.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.34\left(2 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}\right.$, pyrene $\left.-\mathrm{CH}_{\mathrm{b}}=\mathrm{CH}_{a} \mathrm{Ar}\right)$, $7.64(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.92\left(2 \mathrm{H}, \mathrm{d}, J=15.9 \mathrm{~Hz}\right.$, pyrene- C_{b} $\left.=\mathrm{CH}_{\mathrm{a}} \mathrm{Ar}\right), 8.19\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene- $\left.H_{1,3}\right) 8.25\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene- $\left.H_{6,8}\right)$ and $8.54\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene- $\left.\mathrm{H}_{5,9}\right)$; $m / z 578\left(\mathrm{M}^{+}\right)$(Found: C, 87.32; H, 7.42. $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{O}_{2}$ (578.8) requires C, $87.16 ; \mathrm{H}, 7.31 \%$).

Typical procedure for bromination of (E,E)-6 with BTMA Br_{3}. To a solution of (E, E)-6a ($387 \mathrm{mg}, 0.75 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added BTMA $\mathrm{Br}_{3}(729 \mathrm{mg}, 1.86 \mathrm{mmol})$ at room temp. After the reaction mixture was stirred at room temp. for 5 min , it was poured into a large amount of ice/water (100 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL} \times 2)$. The combined extracts were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was recrystallised from hexane gave $560 \mathrm{mg}(89 \%)$ of a mixture of two diastereomers 7a and $7 \mathbf{a}^{\prime}$ in the ratio of $80: 20$ as colourless prisms, m.p. $200-202^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7 \mathrm{a}: 1.67(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 6.01(2 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}$, pyrene$\left.\mathrm{CH}_{\mathrm{b}} \mathrm{Br}-\mathrm{CH}_{a} \mathrm{Br}\right), 6.60\left(2 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}\right.$, pyrene- $\left.\mathrm{CH}_{b} \mathrm{Br}-\mathrm{CH}_{\mathrm{a}} \mathrm{Br}\right)$, 7.42-7.47 ($2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H$), $7.51(4 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{Ar} H), 7.71(4 \mathrm{H}$, d, $J=7.5 \mathrm{~Hz}, \mathrm{Ar} H), 8.38\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene $\left.-H_{1,6}\right), 8.52(2 \mathrm{H}, \mathrm{s}$, pyrene$\left.H_{3,8}\right)$ and $8.47\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}\right.$, pyrene- $\left.H_{5,10}\right) ; 7 \mathbf{a}^{\prime}: 1.67(18 \mathrm{H}, \mathrm{s}$, $t \mathrm{Bu}), 6.10\left(2 \mathrm{H}, \mathrm{d}, J=12.0 \mathrm{~Hz}\right.$, pyrene $\left.-\mathrm{CH}_{\mathrm{b}} \mathrm{Br}-\mathrm{CH}_{a} \mathrm{Br}\right), 6.34(2 \mathrm{H}, \mathrm{d}$, $J=11.4 \mathrm{~Hz}$, pyrene- $\left.\mathrm{CH}_{b} \mathrm{Br}-\mathrm{CH}_{\mathrm{a}} \mathrm{Br}\right), 7.42-7.47(2 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H), 7.53$ $(4 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{Ar} H), 7.69(4 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{Ar} H), 8.27(2 \mathrm{H}, \mathrm{s}$, pyrene- $\left.H_{1,6}\right), 8.34\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene- $\left.H_{3,8}\right)$ and $8.38(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}$, pyrene- $H_{5,10}$); $m / z 837.97\left(\mathrm{M}^{+}\right)$(Found: C, $56.92 ; \mathrm{H}, 4.44$. $\mathrm{C}_{40} \mathrm{H}_{38} \mathrm{Br}_{4}$ (838.36) requires C, 57.31 ; H, 4.57%).

Similarly, a mixture of $\mathbf{7 b}$ and $\mathbf{7 b}$ ' was obtained in 76% yield in the ratio of 80:20 as colourless prisms, m.p. $161-163^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$

7b: $1.66(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 3.89(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.02(2 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}$, pyrene- $\left.\mathrm{CH}_{\mathrm{b}} \mathrm{Br}-\mathrm{CH}_{a} \mathrm{Br}\right), 6.59\left(2 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}\right.$, pyrene- $\mathrm{CH}_{b} \mathrm{Br}-$ $\left.C \mathrm{H}_{\mathrm{a}} \mathrm{Br}\right), 7.03(4 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar} H), 7.64(4 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar} H)$, $8.37\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene- $\left.H_{5,10}\right), 8.51\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene- $\left.H_{3,8}\right)$ and $8.47(2 \mathrm{H}, \mathrm{s}$, pyrene- $H_{1,6}$); 7b': $1.66(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 3.89(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.09(2 \mathrm{H}$, d, $J=11.4 \mathrm{~Hz}$, pyrene $\left.-\mathrm{CH}_{\mathrm{b}} \mathrm{Br}-\mathrm{CH}_{a} \mathrm{Br}\right), 6.35(2 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}$, pyrene- $\left.\mathrm{CH}_{b} \mathrm{Br}-\mathrm{CH}_{\mathrm{a}} \mathrm{Br}\right), 7.03(4 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}, \mathrm{Ar} H), 7.61(4 \mathrm{H}, \mathrm{d}$, $J=7.8 \mathrm{~Hz}, \mathrm{Ar} H), 8.26\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene- $\left.H_{5,10}\right), 8.33\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene $\left.-H_{3,8}\right)$ and $8.37\left(2 \mathrm{H}\right.$, s, pyrene- $\mathrm{H}_{1,6}$). (Found: C, 56.57; H, 4.71. $\mathrm{C}_{42} \mathrm{H}_{42} \mathrm{Br}_{4} \mathrm{O}_{2}$ (898.42) requires C, $56.15 ;$ H, 4.71%).

Similarly, a mixture of $\mathbf{1 0}$ and $\mathbf{1 0}$ ' was obtained in 79% yield in the ratio of 80:20 as colourless prisms, m.p. $150-152{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) \mathbf{1 0}$: $1.61(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.71(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 3.89(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.01(2 \mathrm{H}, \mathrm{d}$, $J=11.4 \mathrm{~Hz}$, pyrene- $\left.\mathrm{CH}_{\mathrm{b}} \mathrm{Br}-\mathrm{CH}_{a} \mathrm{Br}\right), 6.60(2 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}$, pyrene$\left.\mathrm{CH}_{b} \mathrm{Br}-\mathrm{CH}_{\mathrm{a}} \mathrm{Br}\right), 7.02(4 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{Ar} H), 7.64(4 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}$, $\mathrm{Ar} H), 8.36\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene- $\left.H_{6,8}\right), 8.49\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene- $\left.H_{1,3}\right)$ and 8.57 $\left(2 \mathrm{H}, \mathrm{s}\right.$, Pyrene- $\left.H_{5,9}\right) ; \mathbf{1 0}^{\prime}: 1.57(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.66(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 3.89$ $(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.10\left(2 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}\right.$, pyrene- $\left.\mathrm{CH}_{\mathrm{b}} \mathrm{Br}-\mathrm{CH}_{a} \mathrm{Br}\right), 6.38$ $\left(2 \mathrm{H}, \mathrm{d}, J=11.4 \mathrm{~Hz}\right.$, pyrene- $\left.\mathrm{CH}_{b} \mathrm{Br}-\mathrm{CH}_{\mathrm{a}} \mathrm{Br}\right), 7.02(4 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}$, $\mathrm{Ar} H), 7.63(4 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}, \mathrm{Ar} H), 8.24\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene $\left.-H_{6,8}\right), 8.32$ $\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene- $\left.H_{1,3}\right)$ and $8.43\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene- $H_{5,9}$). (Found: C, 56.47 ; $\mathrm{H}, 4.68 . \mathrm{C}_{42} \mathrm{H}_{42} \mathrm{Br}_{4} \mathrm{O}_{2}$ (898.42) requires C, $56.15 ; \mathrm{H}, 4.71 \%$).

Typical procedure for dehydrobromination of $7 \mathbf{a}$ and $7 \mathbf{a}^{\prime}$ with $K O t B u$. To a solution of a mixture of $7 \mathbf{a}$ and $7 \mathbf{a}^{\prime}(168 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $t \mathrm{BuOH}(24 \mathrm{~mL})$ was added $\mathrm{KO} t \mathrm{Bu}(1.34 \mathrm{~g}, 10.5 \mathrm{mmol})$ at room temperature. After the reaction mixture was stirred at $80^{\circ} \mathrm{C}$. for 6 h , it was poured into a large amount of ice/water $(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \times 2)$. The combined extracts were washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was recrystallised from methanol gave $189 \mathrm{mg}(86 \%)$ of 2,7-di-tert-butyl-4,9-bis(phenylethynyl)pyrene 8a as light-yellow prisms, m.p. 202$204^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 2964,2354,2195,1670,1570,1460,1260$, 900,$750 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.63(18 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 7.32-7.46(6 \mathrm{H}, \mathrm{m}, \mathrm{Ar} H)$, $7.33(4 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{Ar} H), 8.22\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}\right.$, pyrene- $H_{3,8}$), $8.38\left(2 \mathrm{H}, \mathrm{s}\right.$, pyrene- $H_{5,10}$) and $8.83\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}\right.$, pyrene- $\left.H_{1,6}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=149.3,132.2,131.7,130.1,129.8,128.6$, $123.5,123.0,122.3,121.8,120.2,94.4,88.0,35.4$ and $31.9 ; \mathrm{m} / \mathrm{z}: 514$ $\left(\mathrm{M}^{+}\right)$(Found: C, 93.21; H, 6.53. $\mathrm{C}_{40} \mathrm{H}_{34}$ (514.72) requires C, 93.34; H, 6.66\%).

Similarly, compounds $\mathbf{8 b}$ and $\mathbf{1 1}$ were obtained in 87% and 75% yields, respectively.
2,7-Di-tert-butyl-4,9-bis(4-methoxyphenylethynyl)pyrene $\mathbf{8 b}$ as lightyellow prisms, m.p. $236-238^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 2953,2358,2197$, $1610,1505,1460,1280,1030,827$ and $730 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.62(18 \mathrm{H}$, $\mathrm{s}, t \mathrm{Bu}), 3.89(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.99(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.67(4 \mathrm{H}$, d, $J=8.7 \mathrm{~Hz}, \mathrm{Ar} H), 8.21\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}\right.$, pyrene- $\left.H_{3,8}\right), 8.35(2 \mathrm{H}$, s, pyrene- $H_{5,10}$) and $8.81\left(2 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}\right.$, pyrene $\left.-H_{1,6}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=159.8,149.6,133.2,130.9,130.2,122.9,122.2,121.8$, $120.2,115.6,114.3,94.5,86.8,55.4,35.4$ and $32.0 ; m / z 574\left(\mathrm{M}^{+}\right)$
(Found: C, 87.63; H, 6.62. $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{O}_{2}$ (574.77) requires C , 87.77; H, 6.66\%).

2,7-Di-tert-butyl-4,10-bis(4-methoxyphenylethynyl)pyrene $\mathbf{1 1}$ as light-yellow prisms, m.p. $224-226^{\circ} \mathrm{C} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}: 2958,2356$, $2198,1620,1508,1460,1270,1030$ and $830 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 1.58$ $(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 1.68(9 \mathrm{H}, \mathrm{s}, t \mathrm{Bu}), 3.88(6 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.99(4 \mathrm{H}, \mathrm{d}$, $J=8.7 \mathrm{~Hz}, \mathrm{Ar} H), 7.67(4 \mathrm{H}, \mathrm{d}, J=8.7 \mathrm{~Hz}, \mathrm{Ar} H), 8.17(2 \mathrm{H}, \mathrm{s}$, pyrene$\left.H_{6,8}\right), 8.33\left(2 \mathrm{H}\right.$, s, pyrene- $\left.H_{1,3}\right)$ and $8.87\left(2 \mathrm{H}\right.$, s, pyrene- $\left.H_{5,9}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=159.8,149.3,149.1,133.2,132.5,131.5,130.9$, $128.8,122.9,121.6,120.8,115.7,114.3,94.4,86.9,55.4,35.6,35.2$, 32.1 and 31.9; m/z $574\left(\mathrm{M}^{+}\right)$(Found: C, 87.83; H, 6.68. $\mathrm{C}_{42} \mathrm{H}_{38} \mathrm{O}_{2}$ (574.77) requires $\mathrm{C}, 87.77 ; \mathrm{H}, 6.66 \%$).

Received 14 October 2008; accepted 5 December 2009
Paper 08/0206 doi: 10.3184/030823409X401295
Published online: 24 February 2009

References

1 J.R. Lakowicz, Principles of fluorescence spectroscopy, 2nd ed., Kluwer Academic/Plenum Publishers, New York, 1999, ch. 21, pp, 595-614.
2 M. Sussaroli, M. Ruonala, J. Virtanen, M. Vauhkonen and P. Somerharju, Biochemistry, 1995, 34, 8843.
3 C. Modrakowski, S.C. Flores, M. Beinhoff and A.D. Schlüter, Synthesis, 2001, 2143.
4 M. Beinhoff, W. Weigel, M. Jurczok, W. Rettig and A.D. Schlüter, Eur. J. Org. Chem., 2001, 3819.

5 G. Venkataramana and S. Sankararaman, Eur. J. Org. Chem., 2005, 4162.
6 A.C. Benniston, A. Harriman, D.J. Lawrie and S.A. Rostron, Eur. J. Org. Chem., 2004, 2272.
7 E. Rivera, M. Belletete, X.X. Zhu, G. Durocher and R. Giasson, Polymer, 2002, 43, 5059.
8 T. Yamato, A. Miyazawa and M. Tashiro, J. Chem. Soc., Perkin Trans. 1, 1993, 3127.
9 T. Yamato and J. Hu, J. Chem. Res, 2006, 762.
10 T. Yamato, A. Miyazawa and M. Tashiro, Chem. Ber., 1993, 126, 2501.
11 T. Yamato, M. Fujimoto, A. Miyazawa and K. Matsuo, J. Chem. Soc. Perkin Trans. 1, 1193 (1997).
12 T. Yamato, M. Fujimoto, Y. Nagano, A. Miyazawa and M. Tashiro, Org. Prep. Proc. Int., 29, 321-330 (1997).
13 J. Hu, A. Paudel and T. Yamato, J. Chem. Res., 2008, 308.
14 A. Merz, A. Karl, T. Futterer, N. Stacherdinger, O. Schneider, J. Lex, E. Lubochand and J.F. Biernat, Liebigs Ann. Chem., 1994, 1199.

15 S. Kajigaeshi, T. Kakinami, H. Tokiyama, T. Hirakawa and T. Okamoto, Chem. Lett., 1987, 627.
16 G. Venkataramana and S. Sankararaman, Org. Lett., 2006, 8, 2739.
17 H.M. Kim, Y.O. Lee, C.S. Lim, J.S. Kim and B.R. Cho, J. Org. Chem., 2008, 73, 5127.
18 J.S. Melinger, Y. Pan, V.D. Kleiman, Z. Peng, B.L. Davis, D. McMorrow and M. Lu, J. Am. Chem. Soc., 2002, 124, 12002.
19 F.D. Lewis, R.S. Kalgutkar and J.-S. Yang, J. Am. Chem. Soc., 1999, 121, 12045.

20 J. Yang, Y. Lee, J. Yan and M. Lu, Org. Lett., 2006, 8, 5813.

[^0]: * Correspondent. E-mail: yamatot@cc.saga-u.ac.jp

